Brief status of

compiled Matlab-C++ program

for project IHRS

Blaise RENAUD – optware.ch

This report contains some of the relevant points describing the status of the development of a stand-alone Matlab-C++ program in the context of the IHRS project at the LENI / EPFL.

The simulation program DO_IHRS was written with Matlab v5.3. The optimization was developed using the Genetic Algorithm C++ library GAlib . For this purpose, an interface had to be made to link the Matlab program with the GAlib package. This interface was realized in C++ with the development environment Microsoft Visual C++ v5.0. It is called Optimize and is in its version 4.455 at this day.

The program DO_IHRS calls the Optimize interface which handle the procedure of optimization by calling upon GAlib. The program runs within Matlab in interpreted mode, which make the control handy for prototyping, but it is quite inefficient, since it lowers down performances by a factor 20 to 100; and the optimization takes for hours.

So to get back normal performances, the best way is to compile the Matlab part and link it with the libraries, in order to get a stand-alone program, which will run by itself on any PC.

On the next page, the programming diagram shows the whole system running with Matlab in interpreted mode. The simulation starts with the initialization and ends with the postprocessing and reporting, all in Matlab.

It is to be noted that the interface Optimize has only one entry point (the mexFunction in Fopt.c), called only once from Matlab. The same point is used to come back after the optimization.

[image: image1.png]10014 - | oo

(9050 ++91 i 31 X3N) 3
€'GA qeTEN
an|a3 BAQ NN4SPIS
o___<0 dWEL Nnay (ksencoel Jeey ‘S1500)
Annd (uopouny eAgoefgo)
40 Inwis X 30ONZD w40
g - >
;b - [CloRle) 407w ued joauog)
] g »urzuonnionz Hodey
uebN [S —
i vomors)
wruopniorg podey
doojeby 40 ZoVEANY
VIVQVA3 1 03 ——
vivawasn:an | | an Q304N WS¥HI oa
an 20 LN uryiodeysuHITIsod
a a 'ajenojen Buisseo0idisod
NOILYINAOd 1SV
|l V[i
an | a3
pozgesouse - o1y xeuw 12> -
v wrjpoax3
v SuaLIvEvY
‘sameseduey yn - oM jeAx
soweseduoo iy || 313 w_mq uogoun frew a4 xeuy uoneziienu|
1SI0918D 99doy Ny
1oy
| e 1doy

T4d3-WOQ- INF11e100l01d GHHIYL GeTHeIN UM GlfeD ++O Buroepisu|

Furthermore, from its side, Optimize calls Matlab at 3 different points :

· First, to calculate the objective function

· Second, to calculate and memorize les plots, reporting the evolution of the calculation, and finally
· Third, to display the plot and some other results. The user can also intervene and modify some of the system parameter (Ngen, Pmut,…) to influence the optimization.
These last few remarks are quite important, since it shows that the situation in our problem is quite complex. Indeed, the Matlab part calls C++ Optimize at its entry point mexFunction, and the C++ part calls Matlab .m files using the procedure mexCallMatlab. And the called function files are activated in Matlab, in another instantiation of the program, but with the same environment (since global variables are used at several occasions). That is where the difficulty is when trying to perform the Matlab compilation.

In fact we found out that it was not that difficult to compile a program which contains a call from Matlab to C++ or the reverse, but not both !!!

The Matlab compiler mcc first generate .c and .h version of the .m files. Some requirements are that all .m files be written in function form (a function with input and output arguments), and some commands and procedures useable in the interpreter cannot be understood by the compiler ! (pause, eval,…).

Then the compiler compiles the .c files with the corresponding .h files and those of the library.

Finally, the link can take place (again under the control of mcc) which finally put together a full stand alone package, hopefully. But not without editing a few files.

After several tries, and several tentatives to understand the compiler user guide (also read between the lines), the procedure was identified. The different files which were not created, but required by the linker (the wrapper, the call optimize.m, etc) were created, edited and included. Also the Optimize code had to be modified to make the entry point and the calls to .m Matlab file more conformed to the compiler specifications.

In the following example, the program Red contains all initilisations, the call to Optimize and the final postprocessing. The Matlab calls from Optimize to Rof (analytical objective function), to Rave (building the plots) and Rave2 (the sampled display of the plots, and the control panel with user intervention). However, for simplifications (because of the supplementary Matlab Graphics C++/C library), all plot functions were removed, only argument exchanges were tested. The procedure is listed in the next page.

The modifications to the Optimize library were quite important and made it unusable with the interpreted mode version of the program. But after further considerations and adaptations, it might be possible to have a unique, parametrized version. This has to be looked at further.

The test were made with a lib version of optimize, rather a dll. There is no reason why it should not be possible to do the same tests with a dll. This would be better.

Procédure pour créer une application Matlab stand-alone

(Compilateur Matlab 2.0 avec Matlab 5.3 et MSVC++ 5.0)

Utilisation de opt.lib

(Une procédure semblable devrait être possible avec une dll)

En entrée :

Un fichier principal matlab

Red.m

Des fichiers complémentaires matlab

Rofm.m rave.m rave2.m dispnum.m

Sont générés :

Red.c Rofm.c rave.c Rave2.c dispnum.c

Puis

red_Main.c
Dans lequel se trouve la table statique (qui correspond à my_table) des fonctions mlx, ainsi que le point d'entrée du programme

A modifier :

Wrap.c
Y copier la table statique en global.

Mettre à jour my_table avec les valeurs de la table statique

Ainsi que NrTableElement qui est le nbre d'entrées

Ce fichier contient l'implémentation de l'appel à la lib de l'appel à la fonction Calculate()

Compilés avec :

Opt.lib gaflib.lib

Les librairies

Optimize.m

L'appel à la librairie Moptimize()

Optimize_extern.h
La définition de l'appel à la lib Moptimize()

Syntaxe de la compilation :

Mcc

Appel du compilateur mcc

-m

Génère les fichiers C

-v

Affiche des messages complets

-L C

Syntaxe C

-B sgl

-h red

Le programme Matlab principal

-W main

Génère le fichier principal main_red.c

-t rofm rave rave2 dispnum optimize Compile les .m

wrap.c

ajoute le wrapper

opt.lib gaflib.lib

ainsi que les librairies

/NODEFAULTLIB:libcd.lib
Pour éviter un conflit avec la librairie.

The obtained executable is a run-time Dos program, it demonstrate the feasibility of the procedure. It has also help in understanding what was going on, and what is left to be done to achieve the set goal. Rapidly listed :

1.- Verify if lib can be replaced by dll for Optimize.

2.- Clean up Optimize code to get it usable in both interpreted and standalone modes.

3.- Modify some hard coded function arguments.

4.- Solve the problem of the function table which is generated static by mcc, and which should really be dynamic for our case.

5.- Include the plotting routines and the Matlab Graphics C/C++ lib and test it with the “analytical IHRS problem”.

6.- Address the complete IHRS according to whishes.

So, this means that the effort is still important, also not tremendous. Solutions have been found. Tools are available. Time is required. Rest the motivation.

OW¦BR – 11.10.01

[image: image2.png]100¢ 1 e | e

sseqejeq ssauisng 208LI8)UI I8S)

azjwpdo

qiivo

T4d3- WOQ- INF13e Josfoid SHH 3L SYHI"OQ o} weiBelp AN

This figure, according to UML, shows the conceptual diagram of the general format, with the separation into 3 functional layers. This representation describes more to the actual point of view, which corresponds to the application case especially when the program should run on a network.
